Fall 24 Div Compete Week 1 - Solutions

(taken from editorials of original problems)

Problem A

(Source: ETH Zurich Competitive Programming Contest Spring 2024 Problem L)

Solution

 $\mathcal{O}(n)$

- Use station B as a stack
- ► Prioritize the A-C type operations

Problem B

(Source: ETH Zurich Competitive Programming Contest Spring 2024 Problem B)

Solution

 $\mathcal{O}(|V|)$

If there is a path with length more than 2, then we have a maximum matching with size more than 1.

Solution

 $\mathcal{O}(|V|)$

For each vertex v count the number of subgraphs with maximum matching of size 1 it is in it, which is equal to $2^{deg(v)}-1$. By inclusion-exclusion answer is $(\sum 2^{deg(v)})-2n-1$.

Problem C

(Source: ETH Zurich Competitive Programming Contest Spring 2024 Problem H)

Solution $O(n \log n)$

- 1. Observe:
 - k of each type possible $\to k-1$ of each type possible k of each type not possible $\to k+1$ of each type not possible \to Binary Search
- 2. Solution will be between 0 and $n/m \Rightarrow \mathcal{O}(\log n)$ checks
- 3. For a possible k: Take the k Mate of each type with highest expiration date, sort by expiration date, and check if every Mate is not expired when dispensed.
 - $\Rightarrow \mathcal{O}(n)$ per check (sort only at beginning) $\mathcal{O}(n \log n)$ might also pass (sort in every check) ETH Contest Sprin

Problem D

5. 2024

(Source: ETH Zurich Competitive Programming Contest Spring 2024 Problem A)

Solution $\mathcal{O}(n \cdot \log(n) + q \cdot \log(n))$

- 1. Root the tree at vertex 0 and calculate the probability of a random walk from 0 to all vertices v, call it P_v .
- 2. Create a data structure to query the lowest common ancestor of two vertices *u*, *v*.
- 3. Let c = LCA(u, v), we can now calculate the probabilty for u, v with P_u, P_v and P_c (With some special cases)
- 4. You cannot solve each query in linear time, TLE.